
Fetching Web Pages, Parsing HTML, Writing Spiders & More

Sean M. Burke

Perl & LWP

Perl and LWP
Sean M. Burke
Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Chapter 7CHAPTER 7

HTML Processing with Tokens
Regular expressions are powerful, but they’re a painfully low-level way of dealing
with HTML. You’re forced to worry about spaces and newlines, single and double
quotes, HTML comments, and a lot more. The next step up from a regular expres-
sion is an HTML tokenizer. In this chapter, we’ll use HTML::TokeParser to extract
information from HTML files. Using these techniques, you can extract information
from any HTML file, and never again have to worry about character-level trivia of
HTML markup.

HTML as Tokens
Your experience with HTML code probably involves seeing raw text such as this:

<p>Dear Diary,

I'm gonna be a superstar, because I'm learning to play
the balalaika & the bazouki!!!

The HTML::TokeParser module divides the HTML into units called tokens, which
means units of parsing. The above source code is parsed as this series of tokens:

start-tag token
p with no attributes

text token
Dear Diary,\n

start-tag token
br with no attributes

text token
I'm gonna be a superstar, because I'm learning to play\nthe

start-tag token
a, with attribute href whose value is http://MyBalalaika.com

text token
balalaika
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

100

end-tag token
a

text token
& the , which means & the

start-tag token
a, with attribute href equals http://MyBazouki.com

text token
bazouki

end-tag token
a

text token
!!!\n

This representation of things is more abstract, focusing on markup concepts and not
individual characters. So whereas the two <a> tags have different types of quotes
around their attribute values in the raw HTML, as tokens each has a start-tag of type
a, with an href attribute of a particular value. A program that extracts information by
working with a stream of tokens doesn’t have to worry about the idiosyncrasies of
entity encoding, whitespace, quotes, and trying to work out where a tag ends.

Basic HTML::TokeParser Use
The HTML::TokeParser module is a class for accessing HTML as tokens. An
HTML::TokeParser object gives you one token at a time, much as a filehandle
gives you one line at a time from a file. The HTML can be tokenized from a file or
string. The tokenizer decodes entities in attributes, but not entities in text.

Create a token stream object using one of these two constructors:

my $stream = HTML::TokeParser->new($filename)
 || die "Couldn't read HTML file $filename: $!";

or:

my $stream = HTML::TokeParser->new(\$string_of_html);

Once you have that stream object, you get the next token by calling:

my $token = $stream->get_token();

The $token variable then holds an array reference, or undef if there’s nothing left in
the stream’s file or string. This code processes every token in a document:

my $stream = HTML::TokeParser->new($filename)
 || die "Couldn't read HTML file $filename: $!";

while(my $token = $stream->get_token) {
 # ... consider $token ...
}

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Basic HTML::TokeParser Use | 101

The $token can have one of six kinds of values, distinguished first by the value of
$token->[0], as shown in Table 7-1.

Start-Tag Tokens
If $token->[0] is "S", the token represents a start-tag:

["S", $tag, $attribute_hash, $attribute_order_arrayref, $source]

The components of this token are:

$tag
The tag name, in lowercase.

$attribute_hashref
A reference to a hash encoding the attributes of this tag. The (lowercase)
attribute names are the keys of the hash.

$attribute_order_arrayref
A reference to an array of (lowercase) attribute names, in case you need to access
elements in order.

$source
The original HTML for this token.

The first three values are the most interesting ones, for most purposes.

For example, parsing this HTML:

gives this token:

[
 'S',
 'img',
 { 'alt' => 'Shatner in rôle of Kirk',
 'height' => '522', 'src' => 'kirk.jpg', 'width' => '352'
 },
 ['src', 'alt', 'width', 'height'],
 ''
]

Table 7-1. Token types

Token Values

Start-tag ["S", $tag, $attribute_hashref, $attribute_order_arrayref, $source]

End-tag ["E", $tag, $source]

Text ["T", $text, $should_not_decode]

Comment ["C", $source]

Declaration ["D", $source]

Processing instruction ["PI", $content, $source]
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 7: HTML Processing with Tokens

Notice that the tag and attribute names have been lowercased, and the ô entity
decoded within the alt attribute.

End-Tag Tokens
When $token->[0] is "E", the token represents an end-tag:

["E", $tag, $source]

The components of this tag are:

$tag
The lowercase name of the tag being closed.

$source
The original HTML for this token.

Parsing this HTML:

gives this token:

['E', 'a', '']

Text Tokens
When $token->[0] is "T", the token represents text:

["T", $text, $should_not_decode]

The elements of this array are:

$text
The text, which may have entities.

$should_not_decode
A Boolean value true indicating that you should not decode the entities in $text.

Tokenizing this HTML:

& the

gives this token:

['T',
 ' & the',
 ''
]

The empty string is a false value, indicating that there’s nothing stopping us from
decoding $text with decode_entities() from HTML::Entities:

decode_entities($token->[1]) if $token->[2];

Text inside <script>, <style>, <xmp>, <listing>, and <plaintext> tags is not sup-
posed to be entity-decoded. It is for such text that $should_not_decode is true.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Basic HTML::TokeParser Use | 103

Comment Tokens
When $token->[0] is "C", you have a comment token:

["C", $source]

The $source component of the token holds the original HTML of the comment.
Most programs that process HTML simply ignore comments.

Parsing this HTML

<!-- Shatner's best known rôle -->

gives us this $token value:

['C', #0: we're a comment
 '<!-- Shatner's best known rôle -->' #1: source
]

Markup Declaration Tokens
When $token->[0] is "D", you have a declaration token:

["D", $source]

The $source element of the array is the HTML of the declaration. Declarations rarely
occur in HTML, and when they do, they are rarely of any interest. Almost all pro-
grams that process HTML ignore declarations.

This HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

gives this token:

['D',
 '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">'
]

Processing Instruction Tokens
When $token->[0] is "PI", the token represents a processing instruction:

["PI", $instruction, $source]

The components are:

$instruction
The processing instruction stripped of initial <? and trailing >.

$source
The original HTML for the processing instruction.

A processing instruction is an SGML construct rarely used in HTML. Most pro-
grams extracting information from HTML ignore processing instructions. If you do
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 7: HTML Processing with Tokens

handle processing instructions, be warned that in SGML (and thus HTML) a pro-
cessing instruction ends with a greater-than (>), but in XML (and thus XHTML), a
processing instruction ends with a question mark and a greater-than sign (?>).

Tokenizing:

<?subliminal message>

gives:

['PI', 'subliminal message', '<?subliminal message>']

Individual Tokens
Now that you know the composition of the various types of tokens, let’s see how to
use HTML::TokeParser to write useful programs. Many problems are quite simple
and require only one token at a time. Programs to solve these problems consist of a
loop over all the tokens, with an if statement in the body of the loop identifying the
interesting parts of the HTML:

use HTML::TokeParser;
my $stream = HTML::TokeParser->new($filename)
 || die "Couldn't read HTML file $filename: $!";
For a string: HTML::TokeParser->new(\$string_of_html);

while (my $token = $stream->get_token) {
 if ($token->[0] eq 'T') { # text
 # process the text in $text->[1]

 } elsif ($token->[0] eq 'S') { # start-tag
 my($tagname, $attr) = @$token[1,2];
 # consider this start-tag...

 } elsif ($token->[0] eq 'E') {
 my $tagname = $token->[1];
 # consider this end-tag
 }

 # ignoring comments, declarations, and PIs
}

Checking Image Tags
Example 7-1 complains about any img tags in a document that are missing alt,
height, or width attributes:

Example 7-1. Check tags

while(my $token = $stream->get_token) {
 if($token->[0] eq 'S' and $token->[1] eq 'img') {
 my $i = $token->[2]; # attributes of this img tag
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Individual Tokens | 105

When run on an HTML stream (whether from a file or a string), this outputs:

Missing for liza.jpg: height width
Missing for aimee.jpg: alt
Missing for laurie.jpg: alt height width

Identifying images has many applications: making HEAD requests to ensure the
URLs are valid, or making a GET request to fetch the image and using Image::Size
from CPAN to check or insert the height and width attributes.

HTML Filters
A similar while loop can use HTML::TokeParser as a simple code filter. You just pass
through the $source from each token you don’t mean to alter. Here’s one that passes
through every tag that it sees (by just printing its source as HTML::TokeParser
passes it in), except for img start-tags, which get replaced with the content of their
alt attributes:

while (my $token = $stream->get_token) {
 if ($token->[0] eq 'S') {
 if ($token->[1] eq 'img') {
 print $token->[2]{'alt'} || '';
 } else {
 print $token->[4];
 }
 }
 elsif($token->[0] eq 'E') { print $token->[2] }
 elsif($token->[0] eq 'T') { print $token->[1] }
 elsif($token->[0] eq 'C') { print $token->[1] }
 elsif($token->[0] eq 'D') { print $token->[1] }
 elsif($token->[0] eq 'PI') { print $token->[2] }
}

So, for example, a document consisting just of this:

<!-- new entry -->
<p>Dear Diary,

This is me & my balalaika, at BalalaikaCon 1998:
 Rock on!</p>

is then spat out as this:

<!-- new entry -->
<p>Dear Diary,

This is me & my balalaika, at BalalaikaCon 1998:
BC1998! WHOOO! Rock on!</p>

 my @lack = grep !exists $i->{$_}, qw(alt height width);
 print "Missing for ", $i->{'src'} || "????", ": @lack\n" if @lack;
 }
}

Example 7-1. Check tags (continued)
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 7: HTML Processing with Tokens

Token Sequences
Some problems cannot be solved with a single-token approach. Often you need to
scan for a sequence of tokens. For example in Chapter 4, we extracted the Amazon
sales rank from HTML like this:

Amazon.com Sales Rank: 4,070

Here we’re looking for the text Amazon.com Sales Rank: , an end-tag for b, and the
next token as a text token with the sales rank. To solve this, we need to check the
next few tokens while being able to put them back if they’re not what we expect.

To put tokens back into the stream, use the unget_token() method:

$stream->unget_token(@next);

The tokens stored in @next will be returned to the stream. For example, to solve our
Amazon problem:

while (my $token = $stream->get_token()) {
 if ($token->[0] eq 'T' and
 $token->[1] eq 'Amazon.com Sales Rank: ') {
 my @next;
 push @next, $stream->get_token();
 my $found = 0;
 if ($next[0][0] eq 'E' and $next[0][1] eq 'b') {
 push @next, $stream->get_token();
 if ($next[1][0] eq 'T') {
 $sales_rank = $next[1][1];
 $found = 1;
 }
 }
 $stream->unget_token(@next) unless $found;
 }
}

If it’s the text we’re looking for, we cautiously explore the next tokens. If the next
one is a end-tag, check the next token to ensure that it’s text. If it is, then that’s
the sales rank. If any of the tests fail, put the tokens back on the stream and go back
to processing.

Example: BBC Headlines
Suppose, for example, that your morning ritual is to have the help come and wake
you at about 11 a.m. as they bring two serving trays to your bed. On one tray there’s
a croissant, some pain au chocolat, and of course some café au lait, and on the other
tray, your laptop with a browser window already open on each story from BBC
News’s front page (http://news.bbc.co.uk). However, the help have been getting
mixed up lately and opening the stories on The Guardian’s web site, and that’s a bit
awkward, since clearly The Guardian is an after-lunch paper. You’d say something
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Token Sequences | 107

about it, but one doesn’t want to make a scene, so you just decide to write a pro-
gram that the help can run on the laptop to find all the BBC story URLs.

So you look at the source of http://news.bbc.co.uk and discover that each headline
link is wrapped in one of two kinds of code. There are lots of headlines in code such
as these:

<B CLASS="h3">Bank
of England mulls rate cut

<B CLASS="h3">Euro
battle revived by Blair speech

and also some headlines in code like this:

 <B class="h2"> Swissair shares wiped out

 <B class="h1">Mid-East blow to US anti-terror drive

(Note that the a start-tag’s class value can be h1 or h2.)

Studying this, you realize that this is how you find the story URLs:

• Every time there’s a B start-tag with class value of h3, and then an A start-tag with
an href value, save that href.

• Every time there’s an A start-tag with an href value, a text token consisting of
just whitespace, and then a B start-tag with a class value of h1 or h2, save the first
token’s href value.

Translating the Problem into Code
We can take some shortcuts when translating this into $stream->unget_
token($token) code. The following HTML is typical:

<B CLASS="h3">Top Stories

...
<B CLASS="h3">Bank
of England mulls rate cut

When we see the first B-h3 start-tag token, we think it might be the start of a B-h3-
A-href pattern. So we get another token and see if it’s an A-href token. It’s not (it’s
the text token Top Stories), so we put it back into the stream (useful in case some
other pattern we’re looking for involves that being the first token), and we keep
looping. Later, we see another B-h3, we get another token, and we inspect it to see
if it’s an A-href token. This time it is, so we process its href value and resume loop-
ing. There’s no reason for us to put that a-href back, so the next iteration of the
loop will resume with the next token being Bank of England mulls rate cut.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 7: HTML Processing with Tokens

sub scan_bbc_stream {
 my($stream, $docbase) = @_;

 Token:
 while(my $token = $stream->get_token) {

 if ($token->[0] eq 'S' and $token->[1] eq 'b' and
 ($token->[2]{'class'} || '') eq 'h3') {
 # The href we want is in the NEXT token... probably.
 # Like: <B CLASS="h3">

 my(@next) = ($stream->get_token);

 if ($next[0] and $next[0][0] eq 'S' and $next[0][1] eq 'a' and
 defined $next[0][2]{'href'}) {
 # We found ! This rule matches!
 print URI->new_abs($next[0][2]{'href'}, $docbase), "\n";
 next Token;
 }
 # We get here only if we've given up on this rule:
 $stream->unget_token(@next);
 }

 # fall thru to subsequent rules here...

 }
 return;
}

The general form of the rule above is this: if the current token looks promising, pull
off a token and see if that looks promising too. If, at any point, we see an unex-
pected token or hit the end of the stream, we restore what we’ve pulled off (held in
the temporary array @next), and continue to try other rules. But if all the expecta-
tions in this rule are met, we make it to the part that processes this bunch of tokens
(here it’s just a single line, which prints the URL), and then call next Token to start
another iteration of this loop without restoring the tokens that have matched this
pattern. (If you are disturbed by this use of a named block and lasting and nexting
around, consider that this could be written as a giant if/else statement at the risk of
potentially greater damage to what’s left of your sanity.)

Each such rule, then, can pull from the stream however many tokens it needs to
either match or reject the pattern it’s after. Either it matches and starts another itera-
tion of this loop, or it restores the stream to exactly the way it was before this rule
started pulling from it. This business of a temporary @next list may seem like overkill
when we only have to look one token ahead, only ever looking at $next[0]. How-
ever, the if block for the next pattern (which requires looking two tokens ahead)
shows how the same framework can be accommodating:

Add this right after the first if-block ends.
if($token->[0] eq 'S' and $token->[1] eq 'a' and
 defined $token->[2]{'href'}) {
 # Like: <B class="h2">
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Token Sequences | 109

 my(@next) = ($stream->get_token);
 if ($next[0] and $next[0][0] eq 'T' and $next[0][1] =~ m/^\s+/s) {
 # We found whitespace.

push @next, $stream->get_token;
 if ($next[1] and $next[1][0] eq 'S' and $next[1][1] eq 'b' and
 ($next[1][2]{'class'} || '') =~ m/^h[12]$/s) {
 # We found <b class="h2">! This rule matches!
 print URI->new_abs($token->[2]{'href'}, $docbase), "\n";
 next Token;
 }
 }
 # We get here only if we've given up on this rule:
 $stream->unget_token(@next);
}

Bundling into a Program
With all that wrapped up in a pure function scan_bbc_stream(), we can test it by first
saving the contents of http://news.bbc.co.uk locally as bbc.html (which we probably
already did to scrutinize its source code and figure out what HTML patterns sur-
round headlines), and then calling this:

use strict;
use HTML::TokeParser;
use URI;

scan_bbc_stream(
 HTML::TokeParser->new('bbc.html') || die($!),
 'http://news.bbc.co.uk/' # base URL
);

When run, this merrily scans the local copy and say:

http://news.bbc.co.uk/hi/english/world/middle_east/newsid_1576000/1576113.stm
http://news.bbc.co.uk/hi/english/world/south_asia/newsid_1576000/1576186.stm
http://news.bbc.co.uk/hi/english/uk_politics/newsid_1576000/1576051.stm
http://news.bbc.co.uk/hi/english/uk/newsid_1576000/1576379.stm
http://news.bbc.co.uk/hi/english/business/newsid_1576000/1576636.stm
http://news.bbc.co.uk/sport/hi/english/in_depth/2001/england_in_zimbabwe/newsid_
1574000/1574824.stm
http://news.bbc.co.uk/hi/english/business/newsid_1576000/1576546.stm
http://news.bbc.co.uk/hi/english/uk/newsid_1576000/1576313.stm
http://news.bbc.co.uk/hi/english/uk_politics/newsid_1576000/1576541.stm
http://news.bbc.co.uk/hi/english/business/newsid_1576000/1576290.stm
http://news.bbc.co.uk/hi/english/entertainment/music/newsid_1576000/1576599.stm
http://news.bbc.co.uk/hi/english/sci/tech/newsid_1574000/1574048.stm
http://news.bbc.co.uk/hi/english/health/newsid_1576000/1576776.stm
http://news.bbc.co.uk/hi/english/in_depth/uk_politics/2001/conferences_2001/labour/
newsid_1576000/1576086.stm

At least that’s what the program said once I got scan_bbc_stream() in its final work-
ing state shown above. As I was writing it and testing bits of it, I could run and re-
run the program, scanning the same local file. Then once it’s working on the local
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 7: HTML Processing with Tokens

file (or files, depending on how many test cases you have), you can write the routine
that gets what’s at a URL, makes a stream pointing to its content, and runs a given
scanner routine (such as scan_bbc_stream()) on it:

my $browser;
BEGIN {
 use LWP::UserAgent;
 $browser = LWP::UserAgent->new;
 # and any other $browser initialization code here
}

sub url_scan {
 my($scanner, $url) = @_;
 die "What scanner function?" unless $scanner and ref($scanner) eq 'CODE';
 die "What URL?" unless $url;
 my $resp = $browser->get($url);
 die "Error getting $url: ", $resp->status_line
 unless $resp->is_success;
 die "It's not HTML, it's ", $resp->content_type
 unless $resp->content_type eq 'text/html';

 my $stream = HTML::TokeParser->new($resp->content_ref)
 || die "Couldn't make a stream from $url\'s content!?";
 # new() on a string wants a reference, and so that's what
 # we give it! HTTP::Response objects just happen to
 # offer a method that returns a reference to the content.
 $scanner->($stream, $resp->base);
}

If you thought the contents of $url could be very large, you could save the contents
to a temporary file, and start the stream off with HTML::TokeParser->new($tempfile).
With the above url_scan(), to retrieve the BBC main page and scan it, you need only
replace our test statement that scans the input stream, with this:

url_scan(\&scan_bbc_stream, 'http://news.bbc.co.uk/');

And then the program outputs the URLs from the live BBC main page (or will die
with an error message if it can’t get it). To actually complete the task of getting the
printed URLs to each open a new browser instance, well, this depends on your
browser and OS, but for my MS Windows laptop and Netscape, this Perl program
will do it:

my $ns = "c:\\program files\\netscape\\communicator\\program\\netscape.exe";
die "$ns doesn't exist" unless -e $ns;
die "$ns isn't executable" unless -x $ns;
while (<>) { chomp; m/\S/ and system($ns, $_) and die $!; }

This is then called as:

C:\perlstuff> perl bbc_urls.pl | perl urls2ns.pl

Under Unix, the correct system() command is:

system("netscape '$url' &")
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Token Sequences | 111

More HTML::TokeParser Methods
Example 7-1 illustrates that often you aren’t interested in every kind of token in a
stream, but care only about tokens of a certain kind. The HTML::TokeParser interface
supports this with three methods, get_tag(), get_text(), and get_trimmed_text()
that do something other than simply get the next token.

$text_string = $stream->get_text();
If the next token is text, return its value.

$text_string = $stream->get_text('foo');
Return all text up to the next foo start-tag.

$text_string = $stream->get_text('/bar');
Return all text up to the next /bar end-tag.

$text = $stream->get_trimmed_text();
$text = $stream->get_trimmed_text('foo');
$text = $stream->get_trimmed_text('/bar');

Like get_text() calls, except with initial and final whitespace removed, and all
other whitespace collapsed.

$tag_ref = $stream->get_tag();
Return the next start-tag or end-tag token.

$tag_ref = $stream->get_tag('foo', '/bar', 'baz');
Return the next foo start-tag, /bar end-tag, or baz start-tag.

We will explain these methods in detail in the following sections.

The get_text() Method
The get_text() syntax is:

$text_string = $stream->get_text();

If $stream’s next token is text, this gets it, resolves any entities in it, and returns its
string value. Otherwise, this returns an empty string.

For example, if you are parsing this snippet:

<h1 lang='en-GB'>Shatner Reprises Kirk Rôle</h1>

and have just parsed the token for h1, $stream->get_text() returns “Shatner Reprises
Kirk Rôle.” If you call it again (and again and again), it will return the empty string,
because the next token waiting is not a text token but an h1 end-tag token.

The get_text() Method with Parameters
The syntax for get_text() with parameters is:

$text_string = $stream->get_text('foo');
$text_string = $stream->get_text('/bar');
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 7: HTML Processing with Tokens

Specifying a foo or /bar parameter changes the meaning of get_text(). If you spec-
ify a tag, you get all the text up to the next time that tag occurs (or until the end of
the file, if that tag never occurs).

For however many text tokens are found, their text values are taken, entity sequences
are resolved, and they are combined and returned. (All the other sorts of tokens seen
along the way are just ignored.)

Note that the tag name that you specify (whether foo or /bar) must be in lowercase.

This sounds complex, but it works out well in real use. For example, imagine you’ve
got this snippet:

<h1 lang='en-GB'>Star of <cite>Star Trek</cite> in New Rôle</h1>
 <cite>American Psycho II</cite> in Production.
 <!-- I'm not making this up, folks. -->

Shatner to play FBI profiler.

and that you’ve just parsed the token for h1. Calling $stream->get_text(), simply
gets Star of . If, however, the task you’re performing is the extraction of the text con-
tent of <h1> elements, then what’s called for is:

$stream->get_text('/h1')

This returns Star of Star Trek in New Rôle.

Calling:

$stream->get_text('br')

returns:

"Star of Star Trek in New Rôle\n American Psycho II in Production.\n \n "

And if you instead called $stream->get_text('schlock') and there is no <schlock...>
in the rest of the document, you will get Star of Star Trek in New Rôle\n American
Psycho II in Production.\n \n Shatner to play FBI profiler.\n, plus whatever text
there is in the rest of the document.

Note that this never introduces whitespace where it’s not there in the original. So if
you’re parsing this:

<table>
<tr><th>Height<th>Weight<th>Shoe Size</tr>
<tr><th>6' 2"<th>180lbs<th>n/a</tr>
</table>

and you’ve just parsed the table token, if you call:

$stream->get_text('/table')

you’ll get back:

"\nHeightWeightShoe Size\n6' 2"180lbsn/a\n"

Not all nontext tokens are ignored by $stream->get_text(). Some tags receive spe-
cial treatment: if an img or applet tag is seen, it is treated as if it were a text token; if
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

More HTML::TokeParser Methods | 113

it has an alt attribute, its value is used as the content of the virtual text token; other-
wise, you get just the uppercase tag name in brackets: [IMG] or [APPLET]. For further
information on altering and expanding this feature, see perldoc HTML::TokeParser
in the documentation for the get_text method, and possibly even the surprisingly
short HTML::TokeParser source code.

If you just want to turn off such special treatment for all tags:

$stream->{'textify'} = {}

This is the only case of the $object->{'thing'} syntax we’ll discuss in this book. In
no other case does an object require us to access its internals directly like this,
because it has no method for more normal access. For more information on this par-
ticular syntax, see perldoc perlref’s documentation on hash references.

The get_trimmed_text() Method
The syntax for the get_trimmed_text() method is:

$text = $stream->get_trimmed_text();
$text = $stream->get_trimmed_text('foo');
$text = $stream->get_trimmed_text('/bar');

These work exactly like the corresponding $stream->get_text() calls, except any
leading and trailing whitespace is removed and each sequence of whitespace is
replaced with a single space.

Returning to our news example:

$html = <<<EOF ;
<h1 lang='en-GB'>Star of <cite>Star Trek</cite> in New Rôle</h1>
 <cite>American Psycho II</cite> in Production.
 <!-- I'm not making this up, folks. -->

Shatner to play FBI profiler.
EOF
$stream = HTML::TokeParser->new(\$html);
$stream->get_token(); # skip h1

The get_text() method would return Star of (with the trailing space), while the
get_trimmed_text() method would return Star of (no trailing space).

Similarly, $stream->get_text('br') would return:

"Star of Star Trek in New Rôle\n American Psycho II in Production.\n \n "

whereas $stream->get_trimmed_text ('br') would return:

"Star of Star Trek in New Rôle American Psycho II in Production."

Notice that the medial newline-space-space became a single space, and the final
newline-space-space-newline-space-space was simply removed.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 7: HTML Processing with Tokens

The caveat that get_text() does not introduce any new whitespace applies also to
get_trimmed_text(). So where, in the last example in get_text(), you would have
gotten \nHeightWeightShoe Size\n6' 2"180lbsn/a\n, get_trimmed_text() would
return HeightWeightShoe Size 6' 2"180lbsn/a.

The get_tag() Method
The syntax for the get_tag() method is:

$tag_reference = $stream->get_tag();

This returns the next start-tag or end-tag token (throwing out anything else it has to
skip to get there), except while get_token() would return start and end-tags in these
formats:

['S', 'hr', {'class','Ginormous'}, ['class'], '<hr class=Ginormous>']
['E', 'p' , '</P>']

get_tag() instead returns them in this format:

['hr', {'class','Ginormous'}, ['class'], '<hr class=Ginormous>']
['/p' , '</P>']

That is, the first item has been taken away, and end-tag names start with /.

Start-tags

Unless $tag->[0] begins with a /, the tag represents a start-tag:

[$tag, $attribute_hash, $attribute_order_arrayref, $source]

The components of this token are:

$tag
The tag name, in lowercase.

$attribute_hashref
A reference to a hash encoding the attributes of this tag. The (lowercase)
attribute names are the keys of the hash.

$attribute_order_arrayref
A reference to an array of (lowercase) attribute names, in case you need to access
elements in order.

$source
The original HTML for this token.

The first two values are the most interesting ones, for most purposes.

For example, parsing this HTML with $stream->get_tag() :

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

More HTML::TokeParser Methods | 115

gives this tag:

[
 'img',
 { 'alt' => 'Shatner in rôle of Kirk',
 'height' => '522', 'src' => 'kirk.jpg', 'width' => '352'
 },
 ['src', 'alt', 'width', 'height'],
 ''
]

Notice that the tag and attribute names have been lowercased, and the ô entity
decoded within the alt attribute.

End-tags

When $tag->[0] does begin with a /, the token represents an end-tag:

["/$tag", $source]

The components of this tag are:

$tag
The lowercase name of the tag being closed, with a leading /.

$source
The original HTML for this token.

Parsing this HTML with $stream->get_tag() :

gives this tag:

['/a', '']

Note that if get_tag() reads to the end of the stream and finds no tag tokens, it will
return undef.

The get_tag() Method with Parameters
Pass a list of tags, to skip through the tokens until a matching tag is found:

$tag_reference = $stream->get_tag('foo', '/bar', 'baz');

This returns the next start-tag or end-tag that matches any of the strings you provide
(throwing out anything it has to skip to get there). Note that the tag name(s) that you
provide as parameters must be in lowercase.

If get_tag() reads to the end of the stream and finds no matching tag tokens, it will
return undef. For example, this code’s get_tag() looks for img start-tags:

while (my $img_tag = $stream->get_tag('img')) {
 my $i = $img_tag->[1]; # attributes of this img tag
 my @lack = grep !exists $i->{$_}, qw(alt height width);
 print "Missing for ", $i->{'src'} || "????", ": @lack\n" if @lack;
}

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 7: HTML Processing with Tokens

Using Extracted Text
Consider the BBC story-link extractor introduced earlier. Its task was to find links to
stories, in either of these kinds of patterns:

<B CLASS="h3">Bank
 of England mulls rate cut

 <B class="h1">Mid-East blow to US anti-terror drive

and then to isolate the URL, absolutize it, and print it. But it ignores the actual link
text, which starts with the next token in the stream. If we want that text, we could
get the next token by calling get_text():

print $stream->get_text(), "\n ",
 URI->new_abs($next[0][2]{'href'}, $docbase), "\n";

That prints the text like this:

Bank
of England mulls rate cut
 http://news.bbc.co.uk/hi/english/business/newsid_1576000/1576290.stm

Note that the newline (and any indenting, if there was any) in the source hasn’t been
filtered out. For some applications, this makes no difference, but for neatness sake,
let’s keep headlines to one line each. Changing get_text() to get_trimmed_text()
makes that happen:

print $stream->get_trimmed_text(), "\n ",
 URI->new_abs($next[0][2]{'href'}, $docbase), "\n";
Bank of England mulls rate cut
 http://news.bbc.co.uk/hi/english/business/newsid_1576000/1576290.stm

If the headlines are potentially quite long, we can pass them through Text::Wrap, to
wrap them at 72 columns.

There’s a trickier problem that occurs often with get_text() or get_trimmed_text().
What if the HTML we’re parsing looks like this?

<B CLASS="h3">Shatner & Kunis win Oscars
 for <cite>American Psycho II</cite> rôles

If we’ve just parsed the b and the a, the next token in the stream is a text token,
Shatner & Kunis win Oscars for , that’s what get_text() returns (get_trimmed_text()
returns the same thing, minus the final space). But we don’t want only the first text
token in the headline, we want the whole headline. So instead of defining the head-
line as “the next text token,” we could define it as “all the text tokens until the
next .” So the program changes to:

print $stream->get_trimmed_text('/a'), "\n ",
 URI->new_abs($next[0][2]{'href'}, $docbase), "\n";
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Using Extracted Text | 117

That happily prints:

Shatner & Kunis win Oscars for American Psycho II rôles
http://news.bbc.co.uk/unlikely/2468.stm

Note that the & and ô entity references were resolved to & and ô. If you
were using such a program to spit out something other than plain text (such as
XML or RTF), a bare & and/or a bare high-bit character such as ô might be unac-
ceptable, and might need escaping in some fashion. Even if you are emitting plain
text, the \xA0 (nonbreaking space) or \xAD (soft hyphen) characters may not be hap-
pily interpreted by whatever application you’re reading the text with, in which case
a tr/\xA0/ / and tr/\xAD//d are called for. If you’re taking the output of get_text()
or get_trimmed_text() and sending it to a system that understands only U.S. ASCII,
then passing the text through a module such as Text::Unidecode might be called for
to turn the ô into an o. This is not really an HTML or HTML::TokeParser matter at
all, but is the sort of problem that commonly arises when extracting content from
HTML and putting it into other formats.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 7: HTML Processing with Tokens

	HTML as Tokens
	Basic HTML::TokeParser Use
	Start-Tag Tokens
	End-Tag Tokens
	Text Tokens
	Comment Tokens
	Markup Declaration Tokens
	Processing Instruction Tokens

	Individual Tokens
	Checking Image Tags
	HTML Filters

	Token Sequences
	Example: BBC Headlines
	Translating the Problem into Code
	Bundling into a Program

	More HTML::TokeParser Methods
	The get_text() Method
	The get_text() Method with Parameters
	The get_trimmed_text() Method
	The get_tag() Method
	The get_tag() Method with Parameters

	Using Extracted Text

